Unsupervised comparable corpora preparation and exploration for bi-lingual translation equivalents

نویسندگان

  • Krzysztof Wolk
  • Krzysztof Marasek
چکیده

The multilingual nature of the world makes translation a crucial requirement today. Parallel dictionaries constructed by humans are a widely-available resource, but they are limited and do not provide enough coverage for good quality translation purposes, due to out-of-vocabulary words and neologisms. This motivates the use of statistical translation systems, which are unfortunately dependent on the quantity and quality of training data. Such systems have a very limited availability especially for some languages and very narrow text domains. In this research we present our improvements to current comparable corpora mining methodologies by reimplementation of the comparison algorithms (using Needleman-Wunch algorithm), introduction of a tuning script and computation time improvement by GPU acceleration. Experiments are carried out on bilingual data extracted from the Wikipedia, on various domains. For the Wikipedia itself, additional cross-lingual comparison heuristics were introduced. The modifications made a positive impact on the quality and quantity of mined data and on the translation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Disambiguation for Translation Extraction from Comparable Corpora

We present a new data-driven approach for enhancing the extraction of translation equivalents from comparable corpora which exploits bilingual lexico-semantic knowledge harvested from a parallel corpus. First, the bilingual lexicon obtained from word-aligning the parallel corpus replaces an external seed dictionary, making the approach knowledge-light and portable. Next, instead of using simple...

متن کامل

Sentence Alignment in Parallel, Comparable, and Quasi-comparable Corpora

We explore the usability of different bilingual corpora for the purpose of multilingual and cross-lingual natural language processing. The usability of bilingual corpus is evaluated by the lexical alignment score calculated for the bi-lexicon pair distributed in the aligned bilingual sentence pairs. We compare and contrast a number of bilingual corpora, ranging from parallel, to comparable, and...

متن کامل

Language and Translation Model Adaptation using Comparable Corpora

Traditionally, statistical machine translation systems have relied on parallel bi-lingual data to train a translation model. While bi-lingual parallel data are expensive to generate, monolingual data are relatively common. Yet monolingual data have been under-utilized, having been used primarily for training a language model in the target language. This paper describes a novel method for utiliz...

متن کامل

استخراج پیکره‌ موازی از اسناد قابل‌مقایسه برای بهبود کیفیت ترجمه در سیستم‌های ترجمه ماشینی

Data used for training statistical machine translation method are usually prepared from three resources: parallel, non-parallel and comparable text corpora. Parallel corpora are an ideal resource for translation but due to lack of these kinds of texts, non-parallel and comparable corpora are used either for parallel text extraction. Most of existing methods for exploiting comparable corpora loo...

متن کامل

Lexical token alignment: experiments, results and applications

Lexical alignment is one of the most challenging tasks in processing and exploiting parallel texts. There are numerous applications that may benefit from an accurate multilingual lexical alignment of biand multi-language corpora. We describe in this paper a hypothesistesting approach to the problem of automatic extraction of translation equivalents from sentence-aligned and tagged parallel corp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.01641  شماره 

صفحات  -

تاریخ انتشار 2015